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a b s t r a c t 

Background and objective: Alzheimer’s Disease (AD) is a chronic and fatal neurodegenerative disease with 

progressive impairment of memory. Brain structural magnetic resonance imaging (sMRI) has been widely 

applied as important biomarkers of AD. Various machine learning approaches, especially deep learning- 

based models, have been proposed for the early diagnosis of AD and monitoring the disease progression 

on sMRI data. However, the requirement for a large number of training images still hinders the extensive 

usage of AD diagnosis. In addition, due to the similarities in human whole-brain structure, finding the 

subtle brain changes is essential to extract discriminative features from limited sMRI data effectively. 

Methods: In this work, we proposed two types of contrastive losses with paired sMRIs to promote the di- 

agnostic performance using group categories (G-CAT) and varying subject mini-mental state examination 

(S-MMSE) information, respectively. Specifically, G-CAT contrastive loss layer was used to learn the closer 

feature representation from sMRIs with the same categories, while ranking information from S-MMSE 

assists the model to explore subtle changes between individuals. 

Results: The model was trained on ADNI-1. Comparison with baseline methods was performed on MIRIAD 

and ADNI-2. For the classification task on MIRIAD, S-MMSE achieves 93.5% of accuracy, 96.6% of sensi- 

tivity, and 94.9% of specificity, respectively. G-CAT and S-MMSE both reach remarkable performance in 

terms of classification sensitivity and specificity respectively. Comparing with state-of-the-art methods, 

we found this proposed method could achieve comparable results with other approaches. 

Conclusion: The proposed model could extract discriminative features under whole-brain similarity. Ex- 

tensive experiments also support the accuracy of this model, i.e., it provides better ability to identify 

uncertain samples, especially for the classification task of subjects with MMSE in 22–27. Source code is 

freely available at https://github.com/fengduqianhe/ADComparative . 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s Disease (AD) is a chronic and fatal neurodegener- 

tive disease that can lead to the death of entire nerve cells and 

issue loss, accounting for approximately 60% of all dementia cases 

1] . There is currently no effective drug therapy to cure it, only 

linical intervention in its development [2] . According to statis- 

ics, there are approximately 21–35 million AD patients worldwide, 

hich causes huge social dementia-related costs. The main clini- 

al manifestations of AD include progressive memory impairment, 
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ognitive impairment, personality changes, and language impair- 

ent [3] . The development of AD is a decades-long process and 

xtremely difficult to diagnose in the early clinical stage. The af- 

ected subjects experience identifiable cognitive deficits without 

ubstantial dysfunction in the Mild Cognitive Impairment (MCI) 

tage, known as a prodromal stage of AD [4] . Due to the slow de-

elopment of AD during the MCI stage and the earlier stages, it is 

ery important to accurately identify AD and MCI patients for the 

arly diagnosis of AD and further clinical interventions. 

In recent years, structural magnetic resonance imaging (sMRI) 

as been widely used to find a morphometric pattern in this chal- 

enging task of computer-aided AD diagnosis [5] . sMRI scan could 

rovide detailed information of internal anatomy and brain tissue 

orphology, such as white matter (WM), gray matter (GM), and 

erebrospinal fluid (CSF), which are beneficial for the identification 
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Fig. 1. Distribution of subjects’ MMSE in three categories including NC, MCI, and AD. The MMSE of NC is mainly distributed in the range 27–30, while the MMSE of AD is 

mainly distributed in the range 10–25. The MMSE distribution of MCI has a wide range and also has a large overlap with the interval of AD and NC. 
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f abnormal structure brain changes. Additionally, as an important 

linical indicator of AD that measures cognitive state for potential 

atient, mini-mental state examination(MMSE) is also widely used 

n clinical and research settings to measure the cognitive status of 

ementia. 

Subjects in AD research can be divided into three stages, Nor- 

al Control (NC), MCI, and AD. Since the development of AD is 

ery hidden, accurately identifying the stage of the subject is an 

mportant and challenging task for AD diagnosis. As Fig. 1 shown 

s the MMSE distribution of more than 700 subjects at different 

tages. It can be clearly seen that the scores of each category are 

oughly distributed in different intervals, but there is a large over- 

ap between these intervals, especially between MCI and NC. which 

lso illustrates the challenge of the subjects’ group classification 

asks. 

Some researchers have tried to use specific data to predict the 

rogression of NC to AD and NC to MCI [6,7] . A large number of

oxel-based morphology (VBM) research have achieved good re- 

ults [8,9] . The traditional VBM methods mainly use computer- 

ssisted systems to calculate the inherent characteristics of cer- 

ain biomarkers, such as hippocampal volume, cortical disease, and 

ubcortical volume [10] . On this basis, methods such as 3D tex- 

ure analysis [11] , biomarker measurements [12] are introduced for 

eature construction. These inherent features combined with clin- 

cal medical data and genetic data were used to build a classi- 

er to predict the changing trends of subjects at different stages 

13] . F. Previtali et al. proposed a feature extraction technique 

rom patients’ MRI brain scans [14] . Zhang et al. proposed a new 

ulti-view clustering model called Consensus Multi-view Cluster- 

ng (CMC) based on nonnegative matrix factorization for predict- 

ng the multiple stages of AD progression [15] . The method based 

n VBM is highly interpretable, but its realization requires profes- 

ional software operation and a large amount of expert knowledge, 

here are easily affected by subjective individuals [16] . 
2 
With the continuous development of deep learning technology, 

ethods based on CNNs perform well on many tasks such as im- 

ge classification, image segmentation [17,18] . Deep learning avoids 

anual feature extraction by constructing an end-to-end model, 

hich is also widely used in sMRI feature extraction [19–21] . Nu- 

erous studies based on 3D CNNs at the subject level extract 

igh-level features for AD diagnosis [22–24] . Since the hippocam- 

us is a biomarker related to AD, Some researchers use the three- 

imensional convolutional network to combine the global and lo- 

al features of the hippocampus for early diagnosis of AD [25] . In 

ddition to modeling at the subject level, the methods based on 

D-Patch and 2D-Slice combined with the voting machines have 

lso achieved good results on the specific tasks [26,27] . Although 

hese methods avoid the problem of data scarcity, it needs to train 

ultiple classifiers at different positions leading to an increase in 

he number of parameters. 

As ROI based [28] and landmark-based [29,30] methods can 

void the interference of invalid information, they are also widely 

sed to creat more training samples in AD diagnosis. In addition 

o using sMRI alone, many studies based on deep learning have 

xplored multi-modal data such as positron emission tomography 

PET) and diffusion tensor imaging (DTI), demographic data [31] , 

enetics, and cerebrospinal fluid biomarkers [32,33] . 

Although significant effort s have been devoted to the early di- 

gnosis of AD using deep learning models, however, it is still an 

nidentified problem: (1) collecting AD, NC, and MCI samples are 

ime-consuming and expensive, which leads to the lack of suffi- 

ient training samples to train complex deep learning models at 

he subject level. (2) A single case of sMRI data contain multi- 

le tissues and have too much noise and irrelevant information, 

hich could seriously affect the generalization ability of the train- 

ng model with a limited number of training subjects. (3) As Fig. 2 

hown, the sMRI anatomical abnormalities of AD and NC, MCI and 

C are relatively small causing the existence of a lot of ambiguous 
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Fig. 2. Comparison of sMRI slices of NC, MCI and AD in the sagittal plane, coro- 

nal plane, and axial plane. All of sMRIs shown here have undergone pre-processing 

operations such as skull stripping. 
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amples. Considering all the above, it is necessary to explore subtle 

hanges in disease progression from the limited sMRI data. 

Considering most of the sMRIs of the whole-brain are similar, 

hus, simple feature extraction methods could not fully mine the 

ubtle differences between subjects. In this work, we introduce a 

ontrastive deep learning method to improve the AD prediction 

esults by capturing the discriminative features. More specifically, 

roup categories (G-CAT) contrastive loss and subject MMSE rank- 

ng (S-MMSE) loss, are proposed to measure the brain changes 

rom the paired sMRIs. The contributions of our work are: 

1. The group based contrastive loss layer is applied to restrict the 

feature representation of the paired images that belong to the 

same category to gather more closely. 

2. S-MMSE ranking loss was added in the process of sMRI fea- 

ture extraction to construct the ranking layer using paired sM- 

RIs with varying MMSE values, which can assist the model to 

learn the subtle differences between individuals. 

3. On the basis of the overall network structure of contrastive loss 

layers based on the paired sMRIs, the G-CAT and S-MMSE have 

good effects on both AD v s. NC, MCI v s. NC and AD v s. MCI v s.
NC classification tasks and performed well than several states 

of the art methods. 

. Methods 

In this section, first, we will introduce the overall architecture 

f the proposed model, and then describe the pair sMRI group cat- 

gories contrastive loss layer and subject MMSE ranking loss layer 

espectively in detail. 

.1. Model structure overview 

The overall architecture of our network is shown in Fig. 3 . For 

D images, such as sMRI, we need to extend 2D convolution to 3D 

onvolution that used for behavior recognition at the earliest. The 

orm of 3D convolution operation is in the following: 

 

l 
j (x, y, z) = 

∑ 

δx 

∑ 

δy 

∑ 

δz 

F l−1 
k 

(x + δx , y + δy , z + δz ) 

×W 

l 
k j ( δx , δy , δz ) (1) 

here (x, y, z) is the coordinates of pixel in 3D image, F l−1 
k 

is the k 

eature map of the l layer and W 

l 
k j 

( δx , δy , δz ) is a three-dimensional 
3 
onvolution kernel connecting the k th feature map of the l − 1 

ayer to the jth feature map of the l layer. u l 
j 
(x, y, z) is the output 

f the convolutional layer, the new jth feature map of the l layer. 

n order to achieve the comparison between samples, we use the 

iamese network whose input with two randomly selected sMRIs 

s our main network architecture. The respective attribute repre- 

entations of the paired samples could be obtained through the 

eural network sharing the same weights [34] . 

Following the convolution layer is an AvgPooling layer which 

aps the multi-channel hidden layer to a vector. 

For each subject in the paired input, the cross entropy loss L is 

efined as: 

 = − 1 

C 

C ∑ 

c=1 

1 

N 

∑ 

X n ∈ X 
I { y c n = c } log ( P( y c n = c| X n : W) ) (2) 

here L is the cross-entropy loss for classification and the I { · } 
s an indicator function. When { · } is true, I { · } = 1 , otherwise 

 { · } = 0 . P( y c n = c| X n : W) is the probability of the subject X n 
eing accurately classified into category C. For a pair of in- 

ut sMRIs X = ( x i , x j ) , we construct a cross-entropy loss function 

 i j = L i + L j , where L i and L j denote the cross-entropy loss func- 

ion of each sample in a pair MRI respectively. 

.2. Group category contrastive loss layer 

Most patients with AD have the same pathological features on 

hole-brain sMRI, such as atrophy of the hippocampus and atro- 

hy of the medial temporal lobe. In order to investigate both the 

ifferences and commonalities between groups, we first proposed 

he group categories (G-CAT) based contrastive loss layer model. 

s shown in the Fig. 4 , the category factors Co g i j corresponding 

o paired sMRIs could be used as new ground truth to guide the 

odel to learn more robust features. Co g i j is defined as the follow- 

ng: 

o g i j = 

{
0 y i = y j 
1 y i � = y j 

(3) 

here y i , y j are the categories of inputs x i , x j respectively. We con- 

truct the new feature information based on the difference be- 

ween the paired MRI embedding feature, which could be used 

o distinguish whether the two input samples belong to the same 

ategory. When their categories are same, the Co g i j is 0, other- 

ise the Co g i j is 1. The hidden layer representation of paired sM- 

Is are h 1 c , h 
2 
c , We use the cascading of two vectors h c = [ h 1 c , h 

2 
c ] to 

epresent the difference features between the input samples. The 

p i j = f (h c ) indicates the predicted probability that two subjects 

elong to the same category, where f is a fully connected network 

apping the embedding difference features into probabilities. 

The loss function of G-CAT L 

CAT is defined as: 

 

CAT 
i j = −Cog i j log p i j − (1 − Cog i j ) log (1 − p i j ) (4) 

By incorporating this group comparative module, the new joint 

ontrastive loss based subjects’ groups L 

CAT 
joint 

is the following: 

 

CAT 
joint = 

∑ 

m = i, j 

L m 

+ α
∑ 

m = i, j 

L 

CAT 
m 

(5) 

here α is a hyperparameter that adjusts the weights between the 

wo loss functions. 

.3. Subject MMSE ranking loss layer 

Compared to G-CAT, based on the assumption that subjects 

ith similar scores may have the same categories, we design a 

ubject MMSE (S-MMSE) ranking loss layer to measure the changes 

f various S-MMSE values. The structure of the ranking layer is 
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Conv1
Conv4Conv3

Conv1 Conv4Conv3

Contrastive
Loss

Pair MRI

AD/NC/MCI

AD/NC/MCIConv2

Conv2

Shared Weights

(90×90×90) (43×43×43) (19×19×19)
(9×9×9) (3×3×3)

Flatten 
FC1
(512)

FC2
(256)

FC3
(64)AvgPooling

Flatten 
FC

(512)
FC
(64)

FC
(512×2)

Contrastive Layer

Fig. 3. The overall structure of our proposed model. The model includes the basic siamese network structure and the proposed contrastive loss layer module. The new feature 

representation was obtained by cascading two hidden layer vectors from two branches, and the final output of the model is the probability distribution of the corresponding 

category. 

Contrastive Loss

?

Same Group/Not Same
3D CNN

3D CNN

Pair MRI

Classifier

AD/NC/MCI

AD/NC/MCI

Group Compare

Fig. 4. Group categories contrastive loss layer. This module takes the paired sMRIs as input and extracts features through 3D CNNs with sharing weights. The obtained 

embedding layer was used to identify whether the input MRI groups are of the same category. 
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hown in Fig. 5 . The distance between the MMSE of different sub- 

ects could provide more ranking information including equal, less, 

nd greater. Similarly, given a pair of sMRI m i , m j and the corre- 

ponding MMSE s i , s j . The ranking factor Cos i j is defined as: 

os i j = 

{ 

0 

1 

2 

s j − s i ≤ ξ

0 ≤
∣∣s i − s j 

∣∣ ≤ ξ
s i − s j ≥ ξ

(6) 

here ξ is a threshold that indicates similar subjects since the 

MSE of the same categories could fluctuate up and down, but 

trictly equal. When 0 ≤
∣∣s i − s j 

∣∣ ≤ ξ , ξ ≥ 0 , we suppose there is 

o significant difference between the input sMRIs. It is noted that 

e did not consider the exact MMSE of each subject in the train- 

ng, we only used the ranking information between the MMSE of 

ifferent subjects, which could provide extra information for dis- 

inguishing the ambiguous samples. In the inference process for 
4 
D diagnostic, sMRI will be the only input to our model without 

MSE. 

The ranking loss function L 

rank is in the following: 

 

rank 
i j = −Cos i j log p i j − (1 − Cos i j ) log (1 − p i j ) (7) 

here p i j is same as the definition in the G-CAT, but it represent 

he predicted probability of ranking type between the MMSE of 

air subject. By incorporating this ranking layer module, the MMSE 

ased joint contrastive loss function L 

rank 
joint 

is the designed as: 

 

rank 
joint = 

∑ 

m = i, j 

L m 

+ β
∑ 

m = i, j 

L 

rank 
m 

(8) 

here β is a hyper-parameter that adjusts the weight between the 

wo loss functions. 
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3D CNN

3D CNN

Pair MRI

?
MMSE

MMSE

MMSE Ranking

Classifier

Greater/Equal/Less

Ranking Loss

Fig. 5. Subject MMSE ranking loss layer. This module takes paired sMRI as inputs and extracts features through 3D CNNs with sharing weights. The obtained embedding 

layer was used to explore the MMSE ranking. The relationships of MMSE could be divided into three types including greater, less and equal. 

Table 1 

Demographic characteristics of the studied subjects from three different databases 

including ADNI-1, ADNI-2 and MIRIAD. (The values are denoted as mean ± standard 

deviation). 

Data Diagnosis Number Age(Years) Sex(M/F) MMSE 

ADNI-1 NC 199 76.2 ±5.1 104/95 29.2 ±1.0 

MCI 332 74.9 ±7.2 206/126 26.9 ±2.0 

AD 141 75.6 ±7.6 74/67 23.1 ±2.5 

MIRIAD NC 23 70.4 ±7.2 12/11 29.4 ±1.2 

AD 46 70.0 ±7.1 19/27 20.5 ±5.7 

ADNI-2 NC 146 77.3 ±6.7 76/70 28.8 ±1.7 

MCI 114 79.3 ±7.1 74/40 23.6 ±6.0 

AD 111 75.6 ±7.8 67/44 21.9 ±3.8 
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.4. Datasets and image preprocessing 

.4.1. Datasets 

The dataset used in this study was obtained from the 

lzheimer’s Disease Neuroimaging Initiative (ADNI) that is avail- 

ble at http://adni.loni.usc.edu/ [35] . Detailed information about 

R acquisition procedures is available at the ADNI website. The 

DNI data set contains two sub-datasets, including ADNI-1 and 

DNI-2. The main goal of ADNI is to test whether serial sMRI, 

ositron emission tomography (PET), other biomarkers, and clin- 

cal and neuropsychological evaluation can be combined to mea- 

ure the progression of MCI and early AD. Subjects in the ADNI-1 

ave 1.5T T1-weighted structural sMRI data while ADNI-2 has 3.0T 

1-weighted structural data. The ADNI-1 has 199 NC, 332 MCI, and 

41 AD subjects. The ADNI-2 has 146 NC, 114 NC, and 111 AD sub- 

ects. 

The MIRIAD is also a database of sMRI brain volume scans of 

lzheimer’s disease patients and healthy elderly people. Each par- 

icipant was scanned multiple times at intervals of 2 weeks to 2 

ears. The purpose is to study the feasibility of using sMRI as an 

utcome indicator of clinical trials for the treatment of Alzheimer’s 

isease [36] . The MIRIAD dataset has 1.5T T1-weighted structural 

RI from 46 AD and 23 NC subjects. Note that in the MIRIAD, only 

MSE score age and gender information are available. It can be 

oted that there are no MCI subjects in the MIRIAD data set. The 

etails are included in Table 1 . 
5 
.4.2. Image pre-processing 

To explore the valuable information for the training model, all 

RIs were prepocessed by a standard pipeline in CAT12 toolbox 

hich is avaiable at http://dbm, neuro.uni- jena.de/cat/ . Firstly, we 

erform anterior commissure (AC)-posterior commissure (PC) cor- 

ection. In order to quickly perform AC-PC correction on a large 

umber of MRI samples, we have adopted the steps based on 

atlab and SPM12 toolbox to perform MRI correction in batches, 

hich could be find at https://www.fil.ion.ucl.ac.uk/spm/software/ 

pm12/ . Then we registered the sMRIs from different datasets into 

he Montreal Neurological Institute (MNI) space. N3 algorithm was 

pplied to correct the intensity inhomogeneity of all MRI. In addi- 

ion, all the images were pre-processed by skull stripping and re- 

oved invalid areas, leaving only the brain locations. By removing 

he invalid region, the neural network can focus more on the fea- 

ure extraction of the valid region and avoid introducing too much 

oise. The main steps of pre-processing is shown in the Fig. 6 . Fol-

owing is the min-max normalization to correct the intensity of 

hose images. Finally, as an input of the neural network, all im- 

ges need be resized to the same resolution. We chose image sizes 

s 90 × 90 × 90 in our experiments, the impact of image sizes will 

e discussed in detail in the experiment. 

.5. Experimental settings 

The proposed model is implemented on the Pytorch library on 2 

VIDIA GeForce GTX 1080Ti with 11G GPU memory. In this study, 

e have conducted three tasks, including AD v s. NC, MCI v s. NC 

nd AD v s. MCI v s. NC classification. In order to avoid the influ-

nce of using models with different parameters, the batch size 

f all models is set to 12. The optimization method is Adam and 

e adjusted the learning rate to make each model converge to 

n optimal value. In order to avoid over-fitting, we also added an 

arly stopping mechanism during the training process. We shuf- 

ed the original dataset to generate a new set of sMRI, which 

as combined with the original data for paired training. It is 

orth noting that the number of pair sMRIs is equal to the num- 

er of original sMRIs, we just randomly select a contrast sMRIs 

n the training set. In the ablation experiments section, we also 

iscuss the impact of hyperparameters on our model. To vali- 

ate and evaluate the model’s generalization ability, we used the 

DNI-1 dataset as the training dataset and evaluate the model on 

he MIRIAD and ADNI-2. For classification, the following measures 

http://dbm,neuro.uni-jena.de/cat/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


H. Qiao, L. Chen, Z. Ye et al. Computer Methods and Programs in Biomedicine 208 (2021) 106282 

Skull 
Stripping 

Drop 
Invalid 

 Raw  MRI

Fig. 6. MRIs are pre-processed by skull stripping and removed invalid areas. 

Fig. 7. Comparison of our proposed G-CAT, S-MMSE and the baseline modle C3D on four indicators including ACC, SEN, SPE and AUC. All the methods were trained on 

ADNI-1 and tested on MIRIAD and ADNI-2 respectively. 
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Table 2 

Result for AD v s. CN classification task with 

models trained on ADNI-1 and tested on 

MIRIAD. 

Method(%) ACC SEN SPE AUC 

C3D 89.0 89.7 93.5 94.1 

G-CAT 92.8 94.3 94.8 97.1 

S-MMSE 93.5 96.6 94.9 97.8 
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ere computed for evaluation: classification accuracy (ACC), sensi- 

ivity (SEN), specificity (SPE), receiver operating characteristic sen- 

itivity (ROC) curve, and under ROC curve (AUC). 

. Results 

.1. Comparison with baseline models 

Due to the simplicity of structure and high generalization on 

mall datasets, 3D neural networks (C3D) as a learning method for 

xtracting spatio-temporal features can also perform feature ex- 

raction on 3D images [37] , was used as a comparison method in 

his study. When α or β in the loss function is set to 0, our pro-

osed model degenerates and becomes a C3D model with two in- 

uts. The comparison between C3D and our model can clear illus- 

rate our superiority of adding the comparison module. The over- 

ll indicators comparison of models and ROC curve comparison are 

hown in the Figs. 7 and 8 . We will discuss the effects of our pro-

osed model on specific tasks on different data sets in detail. 

.1.1. Results on MIRIAD 

Since there are only two categories of subjects in MIRIAD in- 

luding AD and NC. In this experiment, we train the models on 

DNI-1 and perform AD v s. NC classification on MIRIAD. The ex- 

erimental results were shown in Table 2 . The AUC of G-CAT and 

-MMSE have achieved 97.1 and 97.8, respectively. Compared with 

he C3D model, G-CAT and S-MMSE perform well on all four indi- 

ators including ACC, SEN, SPE, and AUC, indicating that our pro- 

osed module can indeed extract more effective features. 

We further compare the proposed group-based model and 

MSE based model, we find the S-MMSE performed better than 
6 
he G-CAT. It may be due to the significant difference in MMSE be- 

ween AD and NC. The MMSE of AD is mainly distributed in the 

ange of 20–25, while the score of NC is mainly distributed in the 

ange of 28–30, which is conducive to the establishment of ranking 

nformation between sMRI data. 

.1.2. Results on ADNI-2 

To better verify the effect of the model and the generalization 

erformance of the proposed model, we also applied the model to 

he ADNI-2 for testing. Similar to ADNI-1, ADNI-2 contains three 

ypes of subjects, including AD, NC, and MCI. In this experiment, 

DNI-1 was still used as a training dataset, the difference is that 

e add the MCI v s. NC classification task that is more difficult 

nd more important in early AD diagnosis, because subjects in the 

CI stage did not show obvious symptoms of dementia, leading to 

light changes in sMRI compare with NC, e.g., the atrophy of the 

ippocampus, making it difficult for accurate identification. 

The experimental results of two classificaiton tasks performed 

n ADNI-2 are shown in Table 3 and 4 . For the AD v s. NC, G-CAT

nd S-MMSE both outperform the baseline. It is worth noting that 

-MMSE still performs well than group-based models, which once 

gain verified our conjecture that MMSE difference is beneficial for 
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Fig. 8. Comparison of the ROC curve between G-CAT, S-MMSE and the baseline modle C3D. All the methods were trained on ADNI-1 and tested on MIRIAD and ADNI-2 

respectively. 

Table 3 

Results for AD v s. CN and MCI v s. NC classification tasks with models trained 

on ADNI-1 and tested on ADNI-2. 

Method(%) 

AD v s. NC MCI v s. NC 

ACC SEN SPE AUC ACC SEN SPE AUC 

C3D 85.3 81.8 86.6 93.4 75.4 72.8 71.6 81.0 

G-CAT 89.3 89.5 88.7 94.2 75.8 77.2 65.9 82.5 

S-MMSE 89.6 90.9 83.3 94.9 78.1 67.5 74.0 82.3 

Table 4 

Results for AD v s. MCI v s. NC classification with 

models trained on ADNI-1 and tested on ADNI-2. 

Method(%) 

AD v s. MCI v s. NC 

ACC ACC AD ACC MCI ACC NC 

C3D 53.6 54.3 25.1 75.5 

G-CAT 54.8 72.8 23.0 62.5 

S-MMSE 56.6 59.8 41.3 65.8 

t

n
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c
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c

d
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Table 6 

A brief description of the studies using ADNI-1 as training dataset and eval- 

uate on the ADNI-2 for AD v s. NC classification. 

Reference(%) Method ACC SEN SPE AUC 

VBM [38] VBM + SVM 80.5 77.4 83.0 87.6 

ROI [39] Tissue + SVM 79.2 78.6 79.6 86.7 

LBM [27] Landmark + SVM 82.2 77.4 86.1 88.1 

wH-FCN [30] Hierarchical CNN 90.3 82.4 86.5 95.1 

G-CAT Group Comaparative 89.3 89.5 88.7 94.2 

S-MMSE MMSE Ranking 89.6 90.9 83.3 94.9 

Table 7 

Comparison of S-MMSE’s effects on AD v s. NC 

task under different thresholds. 

Threshold ACC SEN SPE AUC 

0 90.9 93.1 92.6 96.3 

1 90.1 93.7 91.6 96.5 

2 92.4 97.7 91.4 96.8 

3 91.3 92.0 94.7 97.2 

4 93.5 96.6 93.4 97.8 

5 85.9 84.6 93.7 92.4 

t

f

3

m

b

d

a

he discriminative information extracting on AD v s. NC. We further 

oticed that the G-CAT performed better than the MMSE-based 

odel on the MCI v s. NC task, which shows that the large over-

ap interval of the scores of MCI and NC could lead to deviations 

n the ranking information. In this case, the G-CAT based module 

s more effective for differential information extraction. 

In order to further verify the effect of the model, we conducted 

 three category classification experiment of AD v s. MCI v s. NC. It 

an be seen accurately distinguishing three classifications is chal- 

enging, which is more difficult than MCI vs. NC. From Table 4 , we

an see S-MMSE yield the better result in the term of AC. In ad- 

ition, it has a better recognition effect on MCI recognition when 

ompared with the other methods. We can further see G-CAT per- 

orms best in identifying AD among the three comparison meth- 

ds. In general, both G-CAT and S-MMSE are better than C3D on 
Table 5 

A brief description of the studies using ADNI-1

MIRIAD for AD v s. NC classification. 

Reference(%) Method 

VBM [38] VBM + SVM 

ROI [39] Tissue + SVM 

DSML-1 [40] Multi-Channel 

DSML [40] Multi-Channel + Demographic

DML 2 -1 [40] Multi-Task + Multi-Channel 

PDFC [41] Patch + CNN 

LDNFL [41] Landmark + Direct Acyclic Ne

G-CAT Group Comaparative 

S-MMSE MMSE Ranking 

7 
hree category classification task, which further illustrates the ef- 

ectiveness of our proposed module. 

.2. Comparison with other methods in literature 

We compared our proposed method with three conventional 

ethods including VBM based methods, ROI (region of interest) 

ased methods and several deep learning methods for early AD 

iagnosis. These models were also trained on the ADNI-1 dataset 

nd evaluate on MIRIAD or ADNI-2 for AD v s. NC classification. 

1. VBM based methods [38] . In the VBM methods, using the pro- 

fessional software processing to obtain the local GM tissue den- 
 as training dataset and evaluate on the 

ACC SEN SPE AUC 

88.4 91.3 82.6 92.1 

87.0 91.3 82.6 91.8 

91.6 95.4 83.7 93.2 

 91.8 96.5 85.4 95.9 

92.0 96.3 89.8 96.9 

91.3 89.1 95.6 97.1 

twork 92.7 91.3 95.6 97.6 

92.8 94.3 94.8 97.1 

93.5 96.6 94.9 97.8 
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sity of brains’ sMRI. Based on these features, a support vector 

machine (SVM) was constructed for the classification task. 

2. ROI based methods [39] . The sMRI could be segmented into 

three types, GM, WM, and CSF. ROIs are extracted from the GM 

tissue as the feature for the subjects’ sMRI. Similarly, an SVM 

model with a linear kernel was used for classification. 

3. DSML [40] . DSML is a deep single-task multi-channel learning 

model using demographic information and DSML-1 is the sin- 

gle task model without demographic. DML 2 -1 [40] . DML 2 -1 is 

a deep multi-task multi-channel learning without using demo- 

graphic information. 

4. LBM: This method based on patch-level feature extraction. All 

the patches extracted from a pre-defined landmark was repre- 

sented an embedding vector to perform SVM based classifica- 

tion [27] . 

5. wH-FCN: A hierarchical network was construct by automatically 

identifing multi-scale discriminative locations for AD diagnosis 

[30] . 

6. PDFC: This method learns the representation of patches by 

trainging multiple CNN. The features of each patch are concate- 

nated into a SVM with linear kernel. [41] 

7. LDNFL: LDNFL is a direct acyclic graph (DAG) network based 

on anatomical landmarks [42] for the diagnosis of AD. The DAG 

network is effective in the representation of MRI [41] . 

The comparison results on MIRIAD were shown in Table 5 . It 

s noting our proposed S-MMSE and C-CAT outperforms the tradi- 

ional ways like VBM and ROI. When compaered with DSML and 

ts variants, S-MMSE achieves the same performance in SEN. The 

ccuracy rates of G-CAT and S-MMSE surpass the remaining meth- 

ds. In addtion, S-MMSE achieves an AUC of 97.8 % and G-CAT 

chieve an AUC of 97 . 1 %, which are comparable with the method 

ased on landmark, like PDFC. The results on ADNI-2 were shown 

n Table 6 . Comparison results indicating that our proposed model 

as a certain improvement compared with the traditional meth- 

ds. The performance of G-CAT and S-MMSE on ADNI2 is still very 

imilar, which is reflected in ACC, SEN and AUC. We found that 

ur proposed S-MMSE achieves 94 . 9 % in AUC. Although this is not 

he best, it is also very close to wh-FCN based on the landmarks 

ith prior knowledge. In addition, our S-MMSE has the highest 

EN compared to other methods. 

.3. Ablation experiment 

.3.1. Effect of different scores 

For S-MMSE model, we need to set the threshold ξ empirically, 

hus we explored the effects of proposed models under different 

hresholds. Since the MMSE of AD and NC subjects are distributed 

n two distant intervals and their volatility is also small, we set the 

hreshold from 0 to 5, and the experimental results were shown in 

able 7 . It can be seen from the experimental results that when the 

hreshold is set to 4, the S-MMSE model performs best on the AD 

 s. NC task. This further demonstrates that the rank information 

etween MMSE is beneficial to improve the performance of the 

odel, especially when the difference between subjects’ MMSE are 

arge. According to the AUC change diagram shown in the Table 7 , 

e found that the model performs better on the AD v s. NC task, 

hen the threshold is set around 2–4. 

.3.2. Effect of different image size 

The second ablation experiment is to test the effects of different 

nput image sizes used in our study. Considering the different sizes 

f each MRI could affect the model’s results, we compared the 

odel results at different resolutions and reported them in Table 8 . 

n our experiment, we respectively set the size of the picture as 

0 × 90 × 90 , 120 × 120 × 120 and 150 × 150 × 150 for the classi- 

cation between AD and NC. The comparison demonstrates the 
8 
lassification result of S-MMSE and G-CAT were improved slightly 

hen the image size was set 90 × 90 × 90 . In general, when we set 

he image size 120 × 120 × 120 or 150 × 150 × 150 , the model has 

he similar effects as the previous result, but requires more GPU 

emory. 

.3.3. Evaluate the impact of hyper-parameters 

We tested the impact of our hyper-parameters α and β of G- 

AT and S-MMSE under different weights on MIRIAD and ADNI-2 

espectively. It can be seen from the Fig. 10 that when the hyper- 

arameters begin to increase, the performance of the model be- 

ins to decrease to varying degrees. It mainly because the cross- 

ntropy loss used for classification is the main part and should ac- 

ount for a large proportion, while the loss function for contrast 

earning should account for a small part of the weight in the total 

oss function. We find that when the weight α, β is set to 0 . 2 , the 

odel performs best. 

. Discussion 

.1. Discussion on ambiguous samples 

We analyzed the samples that were predicted incorrectly by 

he baseline model, those samples are usually of one’s interest in 

linical diagnosis. We found that the MMSE of those samples is 

ery likely to distribute between 21–27. In order to better illustrate 

he effectiveness of our proposed model, we further visualize the 

MSE distribution of the samples that were predicted correctly by 

he proposed model, and wrongly predicted by C3D. In the fol- 

owing, we will describe the predictive advantage of our proposed 

odels including G-CAT and S-MMSE in detail, compared with the 

3D model. For the AD v s. NC task, we integrate the results of the

odel on MIRIAD and the results on ADNI-2 and display them to- 

ether in Figs. 9 (a) and (b). 

.1.1. Discussion on the results of G-CAT 

For G-CAT based methods on AD v s. NC ( Fig. 9 (a)), one can find

hat the blue scatters are rare, which shows the baseline model 

nd our proposed model both have good predictive ability for CN. 

here is a lot of red points in Fig. 9 (c) and they are roughly dis-

ributed in the 21–25, which shows the baseline model has the 

oor predictive ability for AD subjects with scores between 21 and 

5, while our model can make more accurate predictions for sub- 

ects with scores in this interval. For MCI v s. NC, our proposed 

odel accurately identified MCI subjects concentrated around 28 

nd NC subjects concentrated around 29–30. The above results 

emonstrate that G-CAT module provides more discriminative fea- 

ures by comparing the differences between classes. 

.1.2. Discussion on the results of S-MMSE 

Similar to the G-CAT, as can be seen from the Fig. 9 (b), S-MMSE

lso performs well on AD v s. NC and has a strong recognition abil- 

ty for AD patients. We can further conclude that due to the large 

ifference in the distribution of MMSE between AD and NC, the 

ifference between the scores has covered the information of the 

ategory, and the effect of using the ranking information between 

he MMSE can be roughly equivalent for G-CAT. The MMSE of MCI 

ubjects fluctuate greatly, and there is a large overlap with NC sub- 

ects. It can be seen from the Fig. 9 (d) that our model can accu-

ately predict MCIs distributed in 27–29, which demonstrates that 

-MMSE has a strong ability to predict confused samples. 

.2. Discussion on the visualization of representations 

Another important classification evaluation method is to gen- 

rate a visual representation of the sample in a two dimensional 
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Table 8 

Results of classification of AD v s. NC on MIRIAD with different input image size. Learning 

models are trained on ADNI-1. 

Method(%) 

G-CAT S-MMSE 

ACC SEN SPE AUC ACC SEN SPE AUC 

90 × 90 × 90 92.8 94.3 94.8 97.1 93.5 97.6 94.9 97.8 

120 × 120 × 120 91.6 92.5 94.7 96.6 93.5 94.3 95.9 97.3 

150 × 150 × 150 92.0 93.7 94.2 96.7 92.4 94.8 93.8 96.8 

(a) G-CAT on AD NC classification (b) S-MMSE based on AD NC classification

(c) G-CAT on MCI NC classification (d) S-MMSE based on MCI NC classification

Fig. 9. The distribution of the specific samples which are predicted correctly by our proposed model and are predicted wrongly by C3D on both AD v s. NC and MCI v s. NC 

classification tasks. 
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pace. The feature representations of the samples were obtained by 

he output of the first fully connected layer. Based on the visual- 

zation tool t-SNE [43] , each subject with high dimension features 

s mapped as a two dimensional vector. As shown in Fig. 11 , for

ubjects are labeled as different categories, we use different col- 

rs on the corresponded points. Therefore a good visualization re- 

ult is that the points of the same color gather more closely [44] .

ig. 11 (a)–(c) show the visualizations of samples in MIRIAD on AD 

 s. NC classifications. It can see that the results of C3D are not sat-

sfactory because the points belonging to different categories are 

ixed. For G-CAT and S-MMSE, points with different categories 

re relatively separated by a certain distance, and points with the 

ame category are clustered together. From Fig. 11 (d)–(f), it can 

e also seen that G-CAT and S-MMSE have better visualization re- 

ults than C3D for AD v s. NC classification on ADNI-2. In addition, 

he S-MMSE performs best among the three methods which fur- 

her verified that the MMSE ranking information is beneficial for 

he AD v s. NC classification. 
t

9 
.3. Literature evidence 

On the AD v s. NC task, we found that S-MMSE achieved better 

erformance by setting the threshold between 2 to 4. Several stud- 

es suppose that a decline of 3 points in MMSE infers morphologi- 

al changes in brain sMRI, which is associated with dementia [45–

7] . Thus, our findings are consistent with this hypothesis, which 

ould be a useful clinical basis for the early diagnosis of AD. It is 

lso worth mentioning that MMSE score is only used during train- 

ng process, only sMRI is required during prediction. i.e. The pro- 

osed method does not require MMSE score as input for clinical 

sage. 

.4. Limitations and future work 

While our proposed model performs well on three datasets, 

everal limitations should be addressed in the future to further im- 

rove its performance. First, our current model was implemented 

o mine subtle differences between samples, but unable to locate 
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(a) (b)
Fig. 10. Results of effects under different (a) α and (b) β . AD v s. NC is the classification on MIRIAD and MCI v s. NC is the classification on ADNI-2. 

Fig. 11. Visualization of subjects in MIRIAD and ADNI-2. Each point indicates one subject. The color of a point indicates the category of the subject including AD and NC. 

x 0 and x 1 are the representation of the embedding vector after dimensionality reduction. (a)–(c): Visualizations of subjects in MIRIAD on AD v s. NC classification. (d)–(f): 

Visualizations of subjects in ADNI-2 on AD v s. NC classification. 
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nd visualize these features. It is an interesting and promising di- 

ection to materialize and visualize these extracted features. Sec- 

ndly, we do not take into account the changes of a single individ- 

al over time but uses the state of the subject at a specific time 

ode. We believe that the timing information of the subject can 

e more conducive to the clinical diagnosis of AD. Finally, datasets 

nder different scan types (i.e., 1.5T scanners and 3T scanners) are 

lso directly used in this research. We also believe the domain 

daptation model [48] could further its generalization capability. 

n future work, we consider further visualizing the features we ex- 

racted using class activation mapping [49] . On the basis of our 

odel, consider the characteristics of a single subject change infor- 

ation over time to improve the recognition ability of the model. 
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